PARTICULAR SOLUTIONS OF UNSTEADY MHD EQUATIONS
WITH ACCOUNT FOR THERMAL CONDUCTIVITY FOR
FINITE MAGNETIC REYNOLDS NUMBERS

A, N, Cherepanov and V, I, Yakovlev

We examine unsteady plane-symmetric and axisymmetric motions of a thermally conductive gas of
finite conductivity in a magnetic field normal to the direction of motion of the medium.

We seek a solution with velocity field having a linear dependence on the space coordinate, The
resulting system of equations is solved by separation of variables,

Some numerical calculations are presented for the problem of plane-symmetric expansion of a con-
ducting gas in a magnetic field in the case in which the electric and thermal conductivities depend only on
the temperature, Distributions of the temperature, density, and magnetic field across the layer section
are presented as a function of magnetic Reynolds number and dimensionless thermal conductivity.

We examine one-dimensional plane-symmetric and axisymmetric expansions of a conducting gas in
a magnetic field directed along the Z axis (perpendicular to the direction of gas motion). At the initial
time t = 0 the gas occupies the space —ay = x =a; between two planes (in the plane-symmetric case) or is
a cylindrical column of radius ay, infinite along the Z axis.

The following assumptions are made,
1) The gas satisfies the ideal gas equation of state and the viscosity is zero.

2) The displacement currents are negligibly small. The magnetic field at the outer edge of the con-
ducting gas can be specified without examining the in vacuo wave processes (quasistationary electro-
magnetic field).

2) The electric conductivity o3 and thermal conductivity %4 of the gas depend on the temperature and
density following power-law relations
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4) We examine uniform expansion with the velocity vy = xa'(t)/a(t), which depends linearly on the
space coordinate. Here a(t) is the unknown law of motion of the gas boundary.

Under these assumptions the dimensionless MHD equations in Lagrangian coordinates (£, 7) have the

form
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Here Ry is the magnetic Reynolds number

Q= SmhoteRT s — 81 (s — 1) MTo
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The dimensionless pressure p and density p are obtained by referring the dimensional quantities to

the scales
Hg? Po H¢?

RTy 8tRTYy

Po =

We take as the Hy, T scales the magnetic field intensity and gas temperature at the outer boundary
at the time t = 0, the characteristic velocity v, is the speed of sound Y» RT, corresponding to the tempera-

ture Ty.
In the plane-symmetric case ¥ = 0, in the cylindrical case Y= 1, From (2.1)
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After substituting (3) and converting to the new functions
h(E V)= "t 1), O(E, 7)y=plrxNg, & 1) (4)

the remaining equations (2) take the form
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We seek the particular solution of (5) by separation of variables, analogous to [1].

In [2] this approach was used to obtain the solution of the subject problem without account for thermal
conductivity, This solution was characterized by the requirement for existence of an external backpressure
proportional to the magnetic pressure. The solution without backpressure, i.e.,expansion into a vacuum,
could not exist because of finite Joule heat release at the outer boundary (the conductivity depended only
on the temperature) for zero density of the medium, therefore in the absence of thermal conductivity the
temperature could not be bounded at the outer boundary. Account for thermal conductivity makes it possible
to obtain the solution for the case of expansion into a vacuum as well.

Let ‘
k(E )= G(v)Z (E), 8¢ =V X

Then from (5.4)
V(7)
PE =0 O X O~ (6)

Substitution of (6) into (5) yields
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Here the left sides of the equations depend only on the variable 7, the right sides of (7,1) and (7.3)
contain mixed terms, The functions K (T), G(T), V(T), (&), X(£), Z (£) taken together will satisfy (7) if the
functions of 7 and the functions of £ individually satisfy the following systems of equations

pODT @@ =N, @@V poreed =1
G (v) v ) lJ'z_(Y+1) [ren(x-1)] g (W) =Ng, V™ (m+1) (7) p‘2—('{%»1)[1-1(—11@(‘»—1)]];;: (v)=N; (8)
e} ('r) p-(nimtl) H(Yar])[(m m)(x-1)+r+k+%-3] . 4, ((DX)’ + (2% = — NpE® (&)
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Here Ny, Ny, N3 are constants; on the basis of (10) the constants in (8.2)
and (9.5) equal unity. In (9) the number of equations is equal to the number of
unknowns, the system (8) contains five equations for the three unknowns p(7),
G(7), V(7); these equations are compatible onlv for certain limitations imposed
on the constants Ny, Ny, N3, and the physical parameters w, n, m, r, k., We note
that (8) and (9) are not the only possible systems. Specifically, from (7) we can
Fig, 1 obtain a system of five equations for the three functions of &; in this case a
system of three equations is obtained for the function of 7. However, study of
the resulting equations showed that their compatibility is possible for limitations
which make the solutions trivial (for example, the solution with zero magnetic

“ field gradient),
|
The functions (1), G(7), V(T) must satisfy the initial conditions
1
t
U’ \jﬂ p ) =1, P” 0) = &= Mo, G_(O)=1
Fig, 2 - 1t g ) (10
® PO=1 (M0 = | | )
Here M; is the Mach number for t = 0,
The functions ®(§), X(£), Z (£) must satisfy the boundary conditions
z()=0, dM=0, XW)=1, zM)=1, X" X|,_,=0 (11)

The conditions (11.2) and (11.5) correspond to the problem of expansion or contraction of a layer in
vacuum, when the density of the medium and the thermal flux at the outer boundary equal zero (radiation
is not considered).

Turning to the study of (8), we must examine several cases separately.

A. Case N3 =N, = 0, This case corresponds to 6h/87 = 0, 96/87 = 0 in (5). In this case, naturally,

dhy 20y
—= =0, =+0
oT ot

The compatibility conditions for (8) with Ny =Nj3 = 0 impose two limitations on the physical constants
%, nh, m, r, k

%= 2, ntm4-r+k—1=0 (12)
The constant Ny is arbitrary. For the functions G(7) and V(T) we obtain the solutions
G(t)=1, Vin=1 (13)

For u(T) we obtain the second-order differential equation u2+'y“" = Ny, which can be integrated once
and with account for the conditions (10) can be written in the form

d].l, 2 . 2N; 1
() =mos s (1 ) (14)
The nature of the solution 4(7T) as a function of the constant Ny and the initial velocity ' (0) can be

investigated immediately from this equation.

If Ny >0,4'(0) = My > 0, then i(T) increases monotonically, and

u () — M* a8 1 oo =
(" =V IF T T+ 7) 1)

For Ny > 0, #(0) = — My < 0 the function u(7) initially decreases; upon reaching the value iin

] ity 2N,
o< = e v <)

the velocity K'(7) becomes equal to zero and thereafter [(T) begins to increase monotonically, and the
velocity £'(7) approaches asymptotically the same magnitude ¢'max = M* as in the case Ny > 0, ¢! (0) = M,,
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Let N; < 0 and the quantity My’ + 2N; /(1 + 7) < 0, If in this case §'(0) =
M, > 0, u(7T) is a monotonically increasing function and p' (1) — M* <M, as

10
N2 [R=1
; = /25/7 T —~», However, if #'(0) = —M; < 0, u(T) decreases monotonically and reaches
?_’:. ey the value K = 0 for which p'(7) = ~«_, For more clarity the approximate nature
o8 el / of the curves ¢(T) for the cases being considered is shown in Fig. 1, Here the
| ;im relations for Ny < 0 are shown dashed, those for the case Ny > 0 are shown by
—— the continuous curves., The nature of the curves for the case Ny < 0, MO2 +
0 & 2Ny /(1 +%) < 0 is shown in Fig, 2,
- 1
y Fig. 3 Hence we see that for ¢'(0) = My > 0 the quantity u(7) first increases,
g reaches the maximal value imax, then falls to zero, and
2N1
ax = 1
- Mas = Ty I oM 7]
Ev\\ o For the case of motion with axial symmetry, i.e, for ¥= 1, (14) can be
R=10 ~ 3 i
w10 \\ integrated. We obtain
""" _— . [ Ny [ Mo (Mg 4+ Ny v]e \Ye
o T2 |\ v = M
*'_*:,_?:\k \L ’ 0ok M )
2 W\\\ Here the plus sign corresponds to a positive initial velocity p'(0) = M, > 0,
T -\‘\A\ the minus sign corresponds to the case u'(0) = — M, < 0,
A z 1 ' Thus we see that the nature of the motion of the conducting plasma bound-
Fig. 4 ary varies over quite wide limits, depending on the arbitrary constants Ny and

the magnitude of the initial velocity u'(0) = + My. It is easy to see from (3), (4),
(6), and (13) that the time variation of the density, temperature, and magnetic
field intensity are determined by the function H(T); with increase of K(T) all these parameters decrease,
with decrease of i(7) they increase. Specifically, the region of collapse of the original slug to zero dimen-
sions corresponds to increase of the external magnetic field to infinity; in this case thetemperature and
density of the medium also increase to infinity, We note that the Mach number, based on the boundary
velocity and temperature as follows

da/dt ) y oy Yl
M= RTE=0  Veg MO

approaches infinity with infinite expansion of the slug regardless of the initial value of M.

We turn to the equation (9) for the functions of £ in the considered case (A) Ny = N3y = 0. In this case
the equations (9.2) and (9.3) can be integrated once
Y 26, , RV 1
chprz_cl, mu—szx rex = ¢, (16)
Here Cy, Cy are constants of integration.

Further integration of (9.1), (16) for arbitrary parameters n, m, r, k, %, ", satisfying the conditions
(12) is difficult. Below we consider as an example one of the particular casesn=1, m=k=r=90, v= 0,

From the equations (9.1), (16) and the boundary conditions (11)

X (£) = sin Y, 5k, Z(EY=1— VY, QR,, cosl/, nE
—aNf (B) p g (17)
oE) =n VY, QR "sem—llﬁz_ Su — Vs QR cos Yy nE] 2NF B« f (B) = S—sﬁgl;l:—ni
3 1

We see from (17) that for ¥ 1/2 QRp, > 1 the magnetic field near the plane of symmetry has a direction
opposite that of the external field, The density in the plane of symmetry is infinite and ®€) > 0 only for
values of V1/ 9QRm, not exceeding the critical value., For Ny = 0, i.e., for motion with constant velocity,
we see easily from (17.3) that the critical value equals two.

This means that the resulting solution is physically meaningful only for 0 < VI/ZQRm <2, We also
note that this solution is characterized by the presence of heat removal in the plane of symmetry, whose
intensity is defined by the quantity
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R 10— e B. Case Ny #0, Ny #0,n+ m #0, Inthis case the simultaneous solution
I % o0 A of (8), satisfying the conditions (10), has the form
] //,2" e (D) = [1 4w (0) s]' (s=2+(7+1) [n (k — 1) —nr]
——— S . n--m
N 4. // R‘m=!{} B G(ty=[p (T)](YH)(n+m+r+k—1)/2(n+m)’ V(T)z[u(T)]('Y-»1)[(n-‘rm)(x—l)+r+k— 11/ (n~m) (18)
0 - = ’ —Z,} For compatibility of the system (8) the physical constants n, m, k, r, «,
Fig. 5 v, must satisfy the relation
G+ k—1+2nE—1)—mnh+2@E+m=0 (19)

The constants Ny, Ny, N5 are defined uniquely in terms of n, m, k, v, », v, ¥' (0)

Ni=—[t+(r+ ) 2E= D= T o

n4+m
(ANt mtrtE—1)
Ny = e w (0)
=GN tme—Dtrtk—1]
N == ntm o) 20

We note that if Ny = 0, (20.1) yields the connection between the physical constants n, m, k, r, ¥;in
this case the need for the condition (19) disappears.

The system of equations (9) with the conditions (11) can be integrated numerically on a computer,
The numerical results presented below were obtained for the plane symmetric case (v =0) fork=r = 0,
m= Yy, n=3% (e, o~ T2 A ~T?) 5 =% [these constants satisfy the condition(19)]. The magnetic
Reynolds number Ry, varies from 1 to 10, the parameter  characterizing the thermal conductivity takes
the values 0.1 and 0.5,

Figures 3, 4, 5 show the spatial distributions respectively of the magnetic field intensity, gas density,
and temperature for My = 0.5 for different Ry, and two values of €, The dashed curves are for @ = 0.1,
continuous curves are for € = 0.5, For Ry, = 1 the functions Z (£), ®(£) for © = 0.1 and 2 = 0.5 practically
coincide, therefore they are shown by a single curve in Figs. 3 and 4. We see from Fig, 5 that for Ry, =
10 there is a temperature gradient in the plane of symmetry, and the thermal flux is directed from the
plane of symmetry. Thus, the solution obtained is characterized by the presence of aplanar heat source.
For smaller values of Ry, the temperature gradient in the plane of symmetry becomes so small that it
cannot be shown in the figures.

Calculations with Rm = 2, € = 0,5 for values of My from 0.1 to 2 were made to clarify the influence
of M, on the functions Z (£), ®(£), X(£). All the curves differed very litfle from those obtained for M, = 0.5,
therefore they arenot presented in graphical form.

It is not difficult to note that for all the parameter values examined the temperature had a maximum
at the outer boundary; the same sort of temperature distribution occurs in the absence of thermal con-
ductivity [2]. The occurrence of a high-temperature layer (T-layer) was discovered in [3], and the T-layer
is not necessarily located at the outer boundary of the expanding slug. The particular solutions obtained in
the present study also permit having the maximal temperature within the layer (i.e., for £ < 1); for this to
oceur, in place of the condition (11.5) for absence of thermal flux at the outer boundary it is necessary to
examine the condition X™&'X'. _ 4 = q < 0, which accounts for the possibility of heat transfer from the
outer boundary (radiation), This is mostreadily seenin case (A) from the equations (9.1) and (16),
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